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INTRODUCTION 

 

Sleep Disordered Breathing and Spinal Cord Injury 

Over the past 3 decades sleep disordered breathing (SDB) in the general 

population has been the subject of increasing study due to the disorder’s negative 

impact on health and well-being. SDB is associated with excessive daytime sleepiness, 

impaired cognition and increased morbidity and mortality due to effects on the 

cardiovascular system, which include: hypertension, coronary artery disease (CAD), 

pulmonary hypertension, heart failure, atrial fibrillation, deep vein thrombosis (DVT) and 

increased risk of stroke (Gopalakrishnan and Tak, 2001; Mohsen and Urbano, 2011; 

Chou et al., 2012; Johansson et al., 2012).  Sleep disordered breathing is a general 

term that encompasses obstructive sleep apnea (OSA), in which patients experience 

apneas and/or hypopneas as a result of closure or narrowing of the upper airway during 

sleep, and central sleep apnea (CSA), in which apneas and/or hypopneas results from 

insufficient descending central ventilatory drive. Patients can also experience a 

combination of both types of SDB (Gilmartin et al., 2005). The prevalence of sleep 

apnea syndrome in the general population is estimated to occur in approximately 2-4% 

of adults per the Wisconsin Sleep Cohort Study (Young et al., 2002; Sean et al., 2005). 

An increased incidence of SDB after spinal cord injury (SCI) has been described 

in the literature over the past decade along with reports of poor sleep quality, sleep 

fragmentation with frequent arousals and daytime hypersomnolence. However, the 



www.manaraa.com

2 

 

specific features of SDB in this population are poorly described and the underlying 

mechanisms are not understood. The prevalence of SDB after SCI has been reported 

as being between 27-77% depending on the source and level of injury (Bonekat et al., 

1990; McEvoy et al., 1995; Klefbeck et al., 1998; Burns, 2000; Stockhammer et al., 

2002; Berlowitz et al., 2009; Biering-Sorensen et al., 2009; Tran et al., 2009; Sankari et 

al., 2014).  Factors that account for the disparity in reported prevalence of SDB after 

SCI include: 1) the wide differences in methodologies used to diagnose sleep apnea in 

this population, which range from hospital-based sleep lab polysomnography (PSG), 

questionnaires of sleep disturbances (Biering-Sorensen et al., 2000), portable home 

sleep testing (Leduc et al., 2000),  overnight pulse oximetry to measure nocturnal 

oxygen desaturation and retrospective chart reviews (Burns et al., 2001, Leduc et 

al.,2007) and 2) the varying criteria and methods used to classify SDB.  

Factors that have been positively correlated with OSA in chronic SCI are much 

the same as those in the general population (obesity, increased neck circumference, 

age, gender) (Short et al., 1992) with the addition of the time from injury being an 

important factor as well as injury level (Stockhammer et al., 2002). Correlation with the 

American Spinal Injury Association (ASIA) impairment scale, which describes the motor 

and sensory extent of an injury, has been mixed (Burns et al., 2001, 2005; 

Stockhammer et al., 2002). However, a longitudinal study of SDB within the first year 

from injury (2 days to 52 weeks) after cervical spinal cord injury (cSCI) in male patients 

found no correlation between standard predictors of OSA and it’s occurrence (Burlowitz 

et al., 2005) as has been described in chronic cSCI by other investigators (Short et al., 

1992). Medications used to control pain and spasticity resulting from injury have been 
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implicated as possible contributing factors to SDB as well (Biering-Sorensen et al., 

2000), although the results of studies exploring the use of baclofen, the most commonly 

prescribed antispasmotic after SCI, have been mixed (Short et al., 1992; McEvoy et 

al.,1995; Klefbeck et al., 1998; Burns et al., 2000; Bensmail et al., 2006).  

Prior to 2014,  the predominant type of SDB identified in SCI patients was OSA 

(Young et al., 1993; Leduc et al., 2007). However, Sankari and colleagues (2014a) 

performed in-lab polysomnography (PSG) on 26 chronic (>1 year) SCI subjects (15 

cervical, 11 high thoracic) using quantitative  measurement of flow and upper airway 

pressure. The prevalence of SDB (i.e. an apnea hypopnea index >5 events/hour) in 

cervical SCI subjects was 93% versus 55% in thoracic SCI subjects. A novel finding 

was that 60% of cervical and 27% of thoracic subjects had CSA and periodic breathing 

(PB) (Sankari et al., 2014). Figure 1 depicts a representative example of CSA and PB in 

a cervical SCI subject.  Primary CSA occurs in <1% of the general population and is 

typically found in special populations such as premature neonates, patients with systolic 

heart failure, those ascending to high altitudes, and opiate users (Javaheri and 

Dempsey, 2013; Panossian et al., 2009; White et al., 2005). The CSA and PB identified 

in SCI subjects by Sankari et al. (2014) could not be explained by heart failure or 

narcotic use.  
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Figure 1. Periodic Breathing in Spinal Cord Injury 
 
A representative polygraph of central sleep apnea and periodic breathing in a C5-7 
cervical SCI subject (male, age 37 years, body mass index 28.5 kg/m2) in Non-REM 
sleep. Repetitive episodes of hyperpnea and hypopnea/apnea are indicative of periodic 
breathing. Supraglottic airway pressure signal (PSG) indicates that respiratory effort 
was greater during hyperpneas, diminished during hypopneas and absent during apnea 
indicating central sleep apnea. PETCO2: end tidal CO2, Mask P: mask pressure.  
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Ventilation after Spinal Cord Injury 

Loss of motor drive to respiratory muscles after cervical and high thoracic SCI 

results in impairment of respiratory function related to the level and completeness of 

injury. Injuries below the level of C5, or incomplete injuries typically leave the diaphragm 

sufficiently innervated to maintain ventilatory homeostasis during wake without the need 

for mechanical ventilation, although some hypoventilation may occur during wake and 

more frequently during sleep when higher brain center input to brainstem respiratory 

control centers is withdrawn (Castriotta and Murthy, 2009). Expiratory muscles (internal 

intercostals, pectoralis major and abdominal muscles) have the greatest magnitude of 

impairment compared with diaphragm and inspiratory accessory muscles in lower 

cervical and high thoracic injuries although varying levels of weakness in diaphragm 

and inspiratory accessory muscles are often present to some degree in lower cervical 

injury (Terson de Paleville et al., 2010). The external intercostals (inspiratory muscles) 

are of particular importance during sleep when their contribution to VT is ~20% in 

healthy humans (Tabachnik et al., 1981). Therefore, loss of external intercostal drive 

may contribute to sleep related hypoventilation after SCI (see Figure 2).  
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Figure 2. The Muscles of Respiration 

The human primary and accessory muscles of respiration are depicted with their level of 
spinal/cranial innervation and phase of respiratory activity (adapted from Schilero et al., 
2009). 
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 Decreased total lung capacity (TLC), forced vital capacity (FVC), forced 

expiratory volume at 1 second (FEV1), peak expiratory flow (PEF), inspiratory capacity 

(IC) and expiratory reserve volume (ERV) are typically observed in patients with cSCI 

(Schilero et al., 2009). In the supine position, FVC and FEV1 are typically higher in SCI 

patients due to the effect of gravity on abdominal contents (pushing up on the 

diaphragm) resulting in a greater upward curve in the diaphragm resulting in greater 

diaphragmatic excursions during inspiration as a result of a more favorable position of 

the muscle fibers on the length-tension curve. However, residual volume (RV) is smaller 

in the supine position (Schilero et al., 2009) also due to elevation of the diaphragm as a 

result of gravity on the abdominal contents. Thus, sleeping in the supine position may 

be accompanied by a decreased work of breathing in cSCI, but a lower RV may have 

implications for gas exchange such as lower arterial oxygen saturation (SaO2) and 

increased arterial carbon dioxide (Schilero et al., 2009).  

Putative Mechanisms for Sleep Disordered Breathing in SCI 

Cervical SCI patients have many ventilatory features that may predispose them 

to SDB, including but not limited to: respiratory muscle weakness, the loss of chest wall 

afferent input to brainstem respiratory control centers, hypoventilation, abnormal O2 and 

CO2 sensing, positional differences in blood pressure and ventilation, sympathetic 

nervous system dysregulation and related cardiovascular dysfunction, poor sleep 

quality, sleep fragmentation and the use of medications for pain and spasticity that may 

influence respiration during sleep (Teasell et al., 2000; Burns et al., 2001; Biering-

Sorensen et al., 2009; Castriotta and Murthy, 2009; Wilson et al., 2010) .  
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Periodic Breathing 

Periodic breathing (PB) during sleep is a type of central sleep disordered 

breathing in which ventilation waxes and wanes in a cyclical manner with periods of 

hypopnea and/or apnea with an accompanying rise in end-tidal CO2 (PETCO2) resulting 

in a period of hyperpnea with resultant hypocapnia which then begins the cycle again. 

These oscillations in respiration are typically accompanied by periods of oxygen 

desaturation during hypopnea/apnea followed by re-saturation during hyperpnic periods, 

as well as periods of hyper- and hypocapnia (Eckert et al., 2007).  Periods of oxygen 

desaturation and re-saturation are associated with the production of reactive oxygen 

species and intracellular inflammatory cascades that are implicated in the morbidity and 

mortality associated with SDB (Gopalakrishnan and Tak, 2001; Mohsen and Urbano, 

2011; Chou et al., 2012; Johansson et al., 2012).   

Specific conditions are known to precipitate PB and it can be experimentally 

induced in the lab using hypoxic conditions. Animal models of PB have shown that the 

mechanism in neonates (i.e. the lamb) is heightened sensitivity to hypoxia, which 

destabilizes breathing and increases loop gain or the peripheral chemoreceptor 

controller loop (Wilkinson et al., 1997). This is also the case in humans during sleep at 

high altitudes (Nussbaumer-Ochsner et al., 2012). In the premature infant PB is 

exacerbated by hypoxemia and relieved by administration of O2, CO2, or drugs that 

stimulate respiration (Darnall, 2010). 
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Periodic breathing can be induced by hypoxia, hypoventilation or respiratory 

depressants and mitigated by respiratory stimulants (i.e. caffeine) and breathing 

supplemental O2 or CO2. However, CO2 administration as long-term treatment for CSDB 

in the home is difficult to control and requires tight servo-control with breath to breath 

feedback of PETCO2 (dynamic CO2 administration) (Badr et al., 1994; Solin and 

Naughton, 2000; Mebrate et al., 2009) and is currently not being used clinically.  In 

patients with a narrow CO2 reserve (the difference between eupneic PETCO2 and the 

apneic threshold, which is the amount PETCO2 must be reduced to induce a central 

apnea) as we have found to be the case in many of our SCI subjects (Sankari et al., 

2014b), small perturbations in respiration lead to oscillations in PCO2 that result in CO2 

levels dipping below the apneic threshold causing central apnea to occur (Yumino and 

Bradley, 2008).  

According to Dempsey and colleagues (2009), the central apnea that commonly 

follows hyperpnea during periodic breathing appears to depend critically on hypocapnea 

being sensed by the peripheral chemoreceptors. However, there is close 

interdependence between central and peripheral chemoreceptors and it is difficult to 

ascertain the contribution of peripheral vs. central chemosensing when looking at the 

control of ventilation in the intact, otherwise healthy human (Xie et al., 2009, St Croix et 

al., 1996).  

Periodic breathing also occurs in patients with severe diastolic heart failure (HF). In 

Cheyne-Stokes respiration (CSR), a form of periodic breathing found in HF in cycles 

(time from peak to peak of hyperpneas) last approximately 60 seconds. This is in 

contrast to CSR or PB that is idiopathic or a result of ascent to altitude in which cycles 
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are approximately 35 seconds in duration. The longer cycle duration in HF is likely due 

to prolonged circulation time in these individuals as a result of poor cardiac function (Sin 

and Man, 2003; Yumino and Bradley, 2008; Binggeli et al., 2010). Heart failure patients 

with CSR are typically hypocapnic during wake and sleep with PaCO2 levels close to 

their apneic threshold. Approaches to PB in the HF point to a number of factors that can 

perpetuate unstable breathing cycles and so investigating the underlying mechanism 

and treatments in HF patients may give us critical insight into the mechanisms that 

contribute to periodic breathing after high SCI injury. The following are taken from 

literature that has investigated PB in the HF population:  

 

1) Chronic hypocapnia: Patients with HF and CSR-CSA have low PaCO2 during 

wake and sleep. The chronic hyperventilation is thought to be from pulmonary 

vagal irritant stimulation resulting from pulmonary congestion. In healthy 

individuals at the onset of sleep the apneic threshold increases but in HF PaCO2 

does not, so the CO2 reserve is smaller than in individuals without HF. The CO2 

reserve is a more important factor in breathing instability than the actual baseline 

PCO2 (Yumino and Bradley, 2007).  

 

2) Increased central and peripheral chemoreceptor sensitivity as a result of 

repeated exposure to hypoxia. This results in ventilatory overshoot  in response 

to changes in ventilation during sleep (Javheri, 1999; Solin et al., 2000). 
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3) Spontaneous arousals during sleep cause stimulation of ventilation from higher 

brain inputs. The resulting hyperpnea lowers PaCO2, leading to central apnea or 

hypopnea that perpetuates the periodic breathing cycle (Naughton et al., 1993).  

 

4) Abnormalities in cerebrovascular reactivity to CO2 lead to lower brain PaCO2. 

Normal reflex changes in cerebrovascular blood flow in response to changing 

[H+] serve to counter-regulate ventilation to stabilize breathing in the face of 

perturbations in PaCO2. The response to a reduction in CO2 or increased H+ 

should be to vasoconstriction that results in shielding of central chemoreceptors 

from transient drops in PaCO2. This phenomenon is called dampening. If 

cerebrovascular reactivity is reduced, the central chemoreceptors sense small 

changes in PaCO2 and ventilatory overshoot may occur that perpetuates periodic 

breathing (Yumino and Bradley, 2008; Xie et al., 2009). 

 

 

5) Decreased FRC: a large FRC acts as an O2/CO2 reservoir that dampens 

oscillations in PaO2/PaCO2 during apneas and stabilizes breathing. A low FRC 

leads to ‘under-dampening’ (Staniforth et al., 1997). In this case, the peripheral 

chemoreceptors would be exposed to frequent oscillations in O2 and CO2, which 

may lead to increased chemoreceptor sensitivity. This is unlikely to be the case 

in SCI subjects who typically have a FRC within normal limits (Stepp et al., 

2008). 
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6) Upper airway instability: The upper airway may collapse during central apneas. If 

airway resistance increases as ventilation decreases during the hypopnea phase 

of CSR or PB, hypoventilation may occur. Conversely, if there is decreased 

airway resistance during the hyperpnea phase, overshoot or hyperventilation is 

more likely to occur. So, upper airway resistance plays a key role in determining 

ventilation, as is well known in OSA, but potentially in central sleep disordered 

breathing as well. In addition, upper airway collapse itself may lead to central 

apnea as a reflex reaction (Sullivan et al., 1978; Badr et al., 1995). Thus, if upper 

airway resistance is a main contributor to periodic breathing or central apnea, 

treatment with CPAP will stabilize the upper airway and stabilize breathing.  

 

 

7) Hypoxia: As previously mentioned, hypoxia is well known to induce CSR and PB 

at high altitudes by causing hyperventilation as one attempts to improve PaO2, 

thus lowering PCO2 below apneic threshold. This type of CSA can be abolished 

by administration of O2, which alleviates the hypoxia, or by CO2 administration 

that brings the PaCO2 well above the apneic threshold resulting in a greater CO2 

reserve.  A transient drop in PaO2 occurs after prolonged apneas or hypopneas 

that can contribute to the magnitude of ventilatory overshoot that follows the 

apnea/hypopnea. Therefore, even mild hypoxic episodes may perpetuate CSR-

CSA (Khoo et al., 1982; Yumino and Bradley, 2008).  

 

Peripheral Chemoreception 
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  The primary peripheral chemoreceptors critical to the control of ventilation in 

adult humans are the carotid body chemoreceptors. Located bilaterally at the bifurcation 

of the carotid arteries, the carotid body chemoreceptors function to respond within 

seconds to changes in PaO2, PaCO2 and [H+] to regulate respiration according to 

metabolic requirements (Forster et al., 1999). Tonic afferent activity of the carotid body 

is required to maintain adequate ventilation under a wide range of physiologic 

conditions including wakefulness, NREM sleep and exercise. The activity of the carotid 

body chemoreceptors plays a critical role in regulating ventilation during NREM sleep 

when inputs from higher brain centers are quiescent, as they are the “first responders” 

to correct abnormalities in PaO2, PaCO2 and [H+] on a breath-by-breath basis.  Acute 

denervation of the carotid bodies results in hypoventilation in awake mammals in 

experimental preparations and clinically in humans with carotid body pathology that 

requires their excision (Gautier and Bonora, 1979; Honda et al., 1979; Lowry et al., 

1999; Kumar and Prabhakar, 2012).  

Oxygen sensing glomus (type I) cells of the carotid body are extensively 

innervated by fibers of the carotid sinus nerve, a branch of the glossopharyngeal nerve 

(CN IX) whose cell bodies are located in the petrosal ganglia. The petrosal ganglia are 

located in the commissural or medial subnuclei of the nucleus tractus solitaries (NTS), 

which is a major integration center in the brainstem for regulation of cardiac, autonomic 

and respiratory output (Kumar and Prabhakar, 2012). The primary neurotransmitters 

released peripherally at the synapse between glomus cells and afferent carotid sinus 

nerve endings are thought to be acetylcholine and ATP, which are released when the 

glomus cell is depolarized in response to hypoxia and/or increased [H+] or PCO2 (Lahiri 
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and Forster, 2003). James and Nantwi (2006) demonstrated in a rat model of cervical 

SCI that in carotid body intact animals, administration of a peripherally acting adenosine 

A2 receptor agonist (CGS-21680) followed by administration of a centrally acting 

adenosine A1 receptor antagonist (DPCPX, previously shown to elicit recovery of 

phrenic nerve activity after C2 hemi-section), resulted in greater phrenic nerve recovery 

compared to the recovery initiated in response to the administration of DPCPX alone. 

However, in carotid body denervated animals the same recovery of phrenic nerve 

activity in the affected nerve was not elicited. Thus James and Nantwi (2006) proposed 

that carotid body adenosine A2 receptors are involved in the excitation of central 

respiratory centers and are critical in recovery of respiratory function after cervical SCI 

(James and Nantwi, 2006).  

After entering the brainstem with the glossopharyngeal nerve, central afferent 

axons of carotid sinus neurons first synapse on chemosensitive respiratory network 

neurons in the caudal nucleus of the NTS to modulate respiration (Teppema and 

Dahan, 2010). A second synaptic site is an area of the parafacial respiratory group 

(pFRG), the retrotrapzoid nucleus (RTN). The RTN, located on the ventral medullary 

surface, is a putative chemosensitive and integrating area containing glutamatergic 

interneurons expressing the transcription factor Phox2b, a marker of chemosensitive 

neurons critical in the control respiration, particularly during sleep (Guyenet, 2008; 

Forester and Smith, 2010). RTN neurons project to the ventral respiratory group (VRG), 

that act directly on phrenic neurons. Studies over the past decade indicate that the 

function of the carotid body peripheral chemoreceptors is to rapidly modulate the gain of 

central chemoreceptors, although historically there has been much debate over how the 
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peripheral and central chemoreceptors interact, whether their interactions are simply 

additive or hyper-additive (Clement et al., 1995; Forster et al., 2007; Nuding et al., 2009; 

Xie et al., 2009; Dempsey et al., 2012). 

Under conditions of chronic hypoxia (sustained hypoxia [SH]), which is 

experienced by non-natives residing at high altitudes, the carotid body undergoes 

acclimatization during which respiratory drive is increased to stimulate ventilation along 

with a concurrent increase in their sensitivity to O2 (increased peripheral chemoreceptor 

gain). Under this chronic condition carotid body will eventually become hypertrophied 

with increased vascularization and an increase in the number of glomus cells (Lahiri, 

2003). Under conditions  chronic intermittent hypoxia (CIH), as occurs with SDB, such 

anatomical changes do not take place, rather a reversible functional plasticity of the 

carotid bodies occurs, known as sensory long-term facilitation (LTF) (MacFarlane and 

Mitchell, 2003; Peng et al., 2003; Peng and Prabhakar, 2003).    

Augmented sensitivity of the carotid body to O2 and CO2 has been implicated as 

a mechanism by which breathing instability during sleep (CSA or PB) can be elicited 

and/or sustained (Dunai et. al., 1999; Dempsey, 2004; Eckert et al., 2007). Modeling 

studies of the respiratory control loop have identified peripheral chemoreflex responses 

as a key factor in PB (Khoo et al., 1982 and 1991). Individuals with high peripheral 

chemosensitivity will “over correct” for relatively small perturbations in CO2 or O2 with 

hyperpnea that results in CO2 falling very near or below the apneic threshold causing 

apnea/hypopnea, which continues the cycle. The strong relationship between PB and 

heightened peripheral chemosensitivity suggests a putative mechanism for SDB in SCI.  



www.manaraa.com

16 

 

                                                                                                                                                                                                                                                          

Conclusions 

In conclusion, it is clear that SDB poses a significant threat to vital organ systems that 

lead to increased morbidity and mortality in the general population. The observation that 

SDB is more prevalent after SCI compared to spinal cord intact populations makes the 

study of this disorder of critically important in this population.  The discovery of a high 

percentage of CSDB in high SCI in studies conducted thus far in our lab (approximately 

75% in cervical SCI subjects studied) suggests specific mechanisms to focus on, 

namely the role of sleep-onset hypoventilation and peripheral chemoreceptor sensitivity. 

Valuable information may be uncovered by targeting and exploring the specific features 

of chemoreception after high thoracic and cervical SCI that may lead to a greater 

understanding of the mechanisms involved in the development of SDB in this 

population. Understanding the key mechanisms will aid in the development of future 

therapeutic targets. In addition, involvement of hypoventilation in the development of 

SDB after SCI is a critical mechanism to explore as chronic sleep-related 

hypoventilation may underlie changes in chemoreflex sensitivity after SCI.  
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CHAPTER 1 

Sleep Onset Hypoventilation in Chronic Spinal Cord Injury 

Introduction 

 Patients with spinal cord injury suffer from poor nocturnal sleep, sleep 

fragmentation and high prevalence of SDB (Bonekat et al., 1990; Klefbeck et al., 1998; 

Burns et al., 2000; Berlowitz et al., 2005; Sankari et al., 2014a). However, the 

underlying mechanisms are not understood. What is clear, is that SDB in chronic SCI 

poses a significant quality of life issue for this population due to excessive daytime 

sleepiness, chronic fatigue and cognitive impairment (Ayas et al., 2014; Sankari et al., 

2014a; Vaessen et al., 2014), as well as increased risk of cardiovascular morbidity and 

mortality that accompanies under-diagnosed and untreated SDB (Caples et al., 2007; 

Marshall et al., 2014).   

The prevalence of SDB after SCI has been reported as being between 27-77% 

(Bonekat et al., 1990; McEvoy et al., 1995; Klefbeck et al., 1998; Burns et al., 2000; 

Stockhammer et al., 2002; Berlowitz et al., 2005; Biering-Sorenson et al., 2009; Tran et 

al., 2010; Sankari et al., 2014a and 2014b). In contrast, the prevalence of sleep apnea 

syndrome in the non-injured population, which is estimated to occur in approximately 2-

4% (depending upon age and gender) according to data from the Wisconsin Sleep 

Cohort Study (Peppard et al., 2013). Work from Sankari and colleagues (2014a) has 

revealed that three out of four chronic SCI patients have symptomatic SDB, with central 

SDB noted in cervical SCI and obstructive SDB in thoracic SCI (Sankari et al., 2014a 
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and 2014b). Furthermore, Sankari et al. (2014b) found that a narrowed CO2 reserve in 

patients with cervical SCI was associated with increased steady-state plant gain, which 

reflects the effectiveness of the respiratory system to eliminate CO2 for a given alveolar 

ventilation level. Accordingly, increased steady-state plant gain may promote the 

development of central apnea upon transition to non-REM sleep when breathing is 

mainly dependent on chemical stimuli. However, the etiology of increased plant gain 

and breathing instability during sleep in this SCI population, who may have normal gas 

exchange during wakefulness, versus able-bodied individuals is not known.  

Cervical and high thoracic SCI results in disruption of descending bulbospinal 

pathways to the muscles of respiration, such as the diaphragm (C3-C5), intercostals 

(T1-T11) and abdominals (T6-L3) (Zimmer et al., 2008; Schilero et al., 2009). Such 

disruption results in respiratory muscle weakness or paralysis depending upon level and 

completeness of injury.  Hypoventilation resulting from restrictive ventilatory mechanics, 

which worsens during sleep, has been proposed as a mechanism for the development 

of sleep disordered breathing in spinal cord injury (Castriotta and Murthy, 2009). 

I hypothesized that Individuals with SCI would develop a greater degree of sleep-

related hypoventilation compared to able-bodied controls. To this end, I measured 

ventilation and upper airway resistance during transitions from alpha (8-12 Hz, wake) to 

theta (4-7 Hz, stage N1 sleep). 

 

Materials and Methods 
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Subjects 

Protocols were approved by the Human Investigation Committee of the John D. 

Dingell Veterans Affairs Medical Center and Wayne State University (Detroit, MI) and 

written informed consent was obtained.  

We studied adults (≥18 years old) with chronic SCI and able-bodied participants 

if they met the inclusion and exclusion criteria. All subjects were instructed not to have 

alcohol, caffeine products or sedatives on the day of the study.  

Inclusion Criteria: Participants with chronic SCI (>6 months post-injury), spanning 

the spectrum from cervical (cSCI, C4-C7) to thoracic levels (tSCI, T1-T6) (complete and 

incomplete injuries). Able-bodied subjects (AB) were recruited with similar 

demographics to the SCI group for age, body mass index (BMI) and gender.  

Exclusion Criteria: Participants were excluded from the study for any of the 

following: (1) pregnant or lactating females; (2) currently ventilator dependent or with 

tracheostomy tube in place; (3) history of cardiac disease including heart failure, 

peripheral vascular disease, or stroke; (4) history of head trauma resulting in 

neurological symptoms or loss of consciousness; (5) advanced lung, liver, or chronic 

kidney disease; (6) extreme obesity, defined for this protocol as BMI >38 kg/m2; or (7) 

other illness that would interfere with completion of the study.  

The first visit to the lab consisted of documenting medical history, physical exam 

that included vital signs, maximal inspiratory and expiratory pressures (MIP and MEP) 

for SCI individuals, and spirometry to rule out pulmonary disease. The second visit 
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consisted of an overnight polysomnography (PSG). If the subject had a concern about 

sleep difficulties, Zolpidem was administered orally 30 minutes prior to beginning of 

recordings to minimize sleep difficulties.  Zolpidem dose was selected based on the 

subject’s age (≥60 years old: 5 mg, <60 years: 10 mg IR or 12.5 mg CR). The number of 

subjects requiring Zolpidem was similar in both groups (Table 1).  

Polysomnography (PSG) 

Subjects arrived at the lab between 8:00-9:00 pm to be instrumented and 

prepared for study. PSG was performed in the supine position using the Comet PSG 

System (AS40 Model) or the Heritage II PSG System (Grass Technologies, Warwick, 

RI). Measurements included electrocardiogram (ECG), electroencephalogram (EEG), 

electrooculograms (EOG) and chin electromyogram (EMG) using the International 10-

20 system of electrode placement (EEG: C3-A2 and C4-A2; EOG: O-A2). Subjects wore 

a nasal mask connected to a pneumotachometer (Hans Rudolph, Model 3700A, 

Shawnee, KS) that measured airflow. Tidal Volume (VT) was determined via integration 

of the pneumotachometer flow signal. End-tidal carbon dioxide (PETCO2) and end-tidal 

oxygen (PETO2) levels were measured with CO2 and O2 gas analyzers (Vacumed Model 

17515 and 17518 respectively, Ventura, CA). Supraglottic airway pressure was 

measured with a pressure tipped catheter (Millar Instruments, Houston, TX) placed 

through one nostril and extending down into the hypopharynx at least 2 cm caudal to 

the visible base of the tongue and superior to the epiglottis. Pulse oximetry was 

measured via ear probe (Biox 3740, Datex-Ohmeda Inc, Madison, WI). Subjects were 

recorded while breathing spontaneously on room air. Ventilation data from the 
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pneumotachometer, supraglottic catheter, pulse oximeter and gas analyzers were 

digitized and analyzed using a PowerLab Data Acquisition System (Model 16SP, 

ADInstruments Inc., Colorado Springs, CO).  

 

Data Analysis 

PSGs were scored using American Academy of Sleep Medicine (AASM) 2012 

recommended criteria (Berry et al., 2012). Supraglottic pressure and respiratory 

inductance plethesmography (RIP) bands (Respitrace, model 200, Nims inc., Miami 

Beach, FL) were used to differentiate between obstructive and central apneas. In order 

to analyze state-specific changes in ventilation, transitions between wake and sleep 

were identified first. Sleep stage scorers were blinded to ventilation. Blinding of 

ventilation signals was accomplished by covering the portion of the screen that 

contained ventilation signals. Two independent sleep scorers identified and verified 

agreement of wake to sleep transitions. Occipital EEG signals were used to determine 

the predominance of alpha (resting wakefulness with eyes closed, 8-12 Hz) vs. theta 

(stage N1 sleep, 4-7 Hz) waves without K complexes or sleep spindles. 

After identification of 3 separate alpha to theta transitions, ventilation data were 

obtained and analyzed from time-matched segments (Figure 3). In the case that 3 

transition segments could not be identified for the subject, two transitions were used. In 

the SCI group, we analyzed 47 transitions (137 and 134 breaths in alpha and theta 

respectively). In the AB group, we analyzed 40 transitions (112 and 108 breaths in 
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alpha and theta respectively). Ventilation data obtained consisted of breath-by-breath 

minute ventilation (VE), tidal volume (VT), respiratory frequency (ƒ), inspiratory time (Ti), 

expiratory time (Te), total cycle time (Ttot), oxygen saturation (SaO2), PETCO2 and 

PETO2. Inspiratory RUA was calculated at the linear portion of the pressure-flow 

relationship using the pressure-flow loops (supraglottic pressure and airflow).  

Alpha to theta transitions were only analyzed if there were at least two thirty-

second epochs of wake preceding the transition so that brief arousals from sleep with 

corresponding hyperpneas were not used. We did not analyze any transitions from theta 

to alpha (arousals from sleep). For each subject, all ventilatory parameters for alpha 

breaths were grouped and averaged as well as theta breaths. Comparisons were then 

made between groups and conditions (alpha vs. theta). 

To verify the accuracy of visual scoring of segments selected for analysis, we 

performed spectral analysis using Fast Fourier Transform (FFT) method (MATLAB, 

Math Works inc., Natick, MA) on EEG segments selected for alpha and theta analysis in 

4 subjects. We found > 90% agreement between visual scoring and spectral analysis 

and thus proceeded with visual classification (Trinder et al., 1992; Yang et al., 2012).  

In breaths where significant hypopnea or apnea occurred, PETCO2 signals were invalid 

in some breaths due to insufficient flow to capture end-tidal plateau. In such cases, the 

PETCO2 values were eliminated (not factored into average PETCO2 for that segment).  

Thus, only breaths with reliable signals were used for PETCO2 analysis, but the VE, VT 

and ƒ for hypopneas were valid and were used in analysis. When apnea occurred, the 

total time of the apnea was considered as part of the Te of the breath before apnea, 
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thus VE for that breath reflected the overall decrease in ventilation as a result of the 

apnea.  

Three secondary analyses were performed: 1) Sleep onset changes in ventilation were 

compared between cervical and thoracic SCI subjects to determine the effect on injury 

level on ventilation.  2) To determine the potential confounding effect of SDB on sleep 

onset ventilatory changes, we compared sleep onset changes in ventilation in 8 cervical 

SCI individuals and 8 able-bodied controls with SDB. 3) To determine the potential 

contribution of intercostal muscle atonia on sleep onset changes in ventilation, we 

analyzed the transition from non-REM to REM sleep in a subset of subjects in each of 

the following groups who had REM sleep: cervical SCI (n=3), thoracic SCI (n=2), and 

able-bodied subjects (n=3).  

 

Statistical Analysis 

Two-way repeated measures ANOVA (Sigma Plot 12.1) was performed to 

determine within group (e.g. alpha to theta changes in cSCI) and between group 

differences in ventilatory parameters and upper airway resistance between the two 

conditions: alpha and theta EEG frequencies. When appropriate, post-hoc pair-wise 

multiple comparisons were made using the Student-Newman-Keuls method. When data 

were not normally distributed, appropriate non-parametric analysis was employed. T-

tests were used to compare all demographic data between AB and SCI. All data are 

reported as mean ± SD and significance was set at p<0.05. 
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Results 

Sleep onset ventilatory changes  

We studied 18 subjects with SCI and 17 AB with similar demographics (Table 1). 

In figure 3 we show an illustration of tidal volume (VT) decrease during the transition 

from alpha to theta in a representative cSCI subject. The effect of wake to sleep 

transition on ventilation in a representative AB subject is shown in figure 4.  Group 

changes in VT and VE during sleep-onset transitions are detailed in figure 5 (panels A 

and B). Sleep onset was associated with significant decrease in VT and VE in the SCI 

but not the AB subjects. However, there was no significant change in RUA with sleep 

onset in either group (Figure 6). 

The effect of sleep onset on ventilatory parameters in SCI and AB groups is 

summarized in Table 2. Sleep onset in the SCI group was associated with decreased Ti 

while lengthening Te, reduced duty cycle (Ti/Ttot) and unchanged respiratory frequency 

and Ttot. In contrast, the AB group demonstrated increased respiratory frequency at 

sleep onset with no significant changes in Ti, Te, or Ttot.   
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Table 1. Subject Characteristics 

 SCI Able-Bodied p value 

N 18 17 NS 

Age (years) 42.4±17.1 42.9±13.9 NS 

BMI (kg/m2) 26.3±4.8 27.8±5.4 NS 

Gender (M/F) 11/7 8/9 NS 

NC (cm) 38.5±3.0 37.1±3.7 NS 

AHI (events/hr) 22.9±22.4 7.3±8.8 p<0.05 

AHI (>5 events/hr) 12 8 -- 

Zolpidem (Y/N) 9/9 8/7 NS 

Injury Level (cervical/thoracic) 10/8 -- -- 

MIP (% predicted) 87.2±29.4 -- -- 

MEP (% predicted) 42.3±15.8 -- -- 

FVC (% predicted) 71.5±17.0 86.5±26.5 NS 

FEV 1(% predicted) 76.4±16.7 87.6±18.4 NS 

FEV1/FVC 80.5±7.0 77.6±9.6 NS 

All data mean ± SD.  BMI: body mass index, NC: neck circumference, AHI: apnea 

hypopnea index, MIP: maximal inspiratory pressure, MEP: maximal expiratory pressure, 

FVC: forced vital capacity, FEV1: forced expiratory volume at 1 second, FEV1/FVC: the 

ratio of FEV1 to FVC, NS: not significant. 
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Table 2. Effect of Sleep Onset on Respiratory Cycle Timing and Chemical 

Stimuli 

                SCI          Able-Bodied 

 Alpha Theta Alpha Theta 

Frequency 
(breaths/min) 

15.3±3.1 14.9±3.9 15.3±2.5 16.2±2.9ǂ 

Ti (sec) 1.8±0.4 1.7±0.3ǂ 1.8±0.3 1.7±0.4 

Te (sec) 2.4±0.7 3.0±1.6ǂ 2.3±0.5 2.2±0.5* 

Ti/Ttot 0.44±0.05 0.40±0.08ǂ 0.43±0.05 0.44±0.07 

SaO2 (%) 96.1±1.4 95.8±1.7 96.2±1.0 96.2±0.9 

PETCO2 
(mmHg) 

38.9±2.7 40.6±3.4ǂ 39.5±3.2 39.9±3.2 

PETO2 
(mmHg) 

94.1±7.1 91.2±8.3ǂ 99.4±5.4 98.9±6.1 

All data mean ± S.D. SCI n=18, AB n=17. * between-group (SCI vs. Able-

Bodied) difference p<0.05, ǂ within-group difference (alpha vs. theta) 

p<0.05. Ti: inspiratory time, Te: expiratory time, Ti/Ttot: ratio of ti to total 

cycle time. 
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Figure 3: Transition from Alpha to Theta in Cervical Spinal Cord Injury 

Panel A: A representative polygraph with EEG and EMG recordings in a 36 year old 
chronic cervical (C6, incomplete injury) SCI individual (male, BMI 28.2 kg/m2) during the 
transition from wake (alpha) to N1 sleep (theta). E: eye, M: mastoid ground, C: central, 
O: occipital. Panel B: A 30 seconds polygraph with ventilation recording, time matched 
to the EEG data in panel A. Note the reduction in flow and tidal volume with sleep-onset 
evident in panel B. VT: tidal volume; PSG: supraglottic pressure; PETCO2: end-tidal CO2; 
PETO2: end-tidal O2.  
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Figure 4: Transition from Alpha to Theta in an Able-Bodied Subject 

Panel A: A representative polygraph with EEG and EMG recordings in a 55 year old 
able-bodied subject (male, BMI 27 kg/m2) during the transition from wake (alpha) to N1 
sleep (theta). E: eye, M: mastoid ground, C: central, O: occipital. Panel B: A 30 second 
polygraph of ventilation, time matched to the EEG data in panel A. VT: tidal volume; 
PSG: supraglottic pressure; PETCO2: end-tidal CO2; PETO2: end-tidal O2.  
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Figure 5: Effect of Sleep Onset on Ventilation 

Panel A illustrates a greater decrease in tidal volume (VT) with sleep onset in SCI 
compared to able-bodied subjects. Panel B illustrates the greater decrease minute 
ventilation (VE) at sleep onset in SCI group compared with able-bodied group.  
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Figure 6: Effect of Sleep Onset on Upper Airway Resistance 

There was no significant change in upper airway resistance at sleep onset in SCI or 
able-bodied subjects. Between-group (SCI vs. Able-bodied) difference p = 0.624; within 
group (SCI-alpha vs. theta, Able-bodied-alpha vs. theta) difference p= 0.954. 
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Comparison of cervical vs. thoracic SCI: 

To determine if spinal injury level influenced sleep onset ventilation, we 

compared the ventilatory parameters detailed above between cSCI (n=10) and tSCI 

(n=8) subjects. Alpha to theta transitions were associated with significantly decreased 

VT in cSCI subjects (alpha: 576.0±256.3 mL, theta: 293.1±105.8 mL, p<0.05) but not in 

tSCI (alpha: 445.2±100.9 mL, theta: 364.6±90.7 mL, p=ns). Similarly, VE was 

significantly reduced in cSCI (alpha: 7.8±2.6 L, theta: 4.3±1.6 L, P<0.05) compared to 

tSCI (alpha: 6.9±1.5 L, theta: 5.6±1.4 L, p=0.08). Thus, injury level has a significant 

impact on sleep onset hypoventilation.  Further results of cSCI vs. tSCI analyses are 

detailed in Table 3.   

Effect of sleep disordered breathing on sleep onset hypoventilation in cervical SCI and 
able-bodied subjects  

To determine the potential contribution of SDB to sleep-onset hypoventilation in 

the cSCI group; we compared 8 cSCI individuals and 8 AB subjects with SDB as 

defined by an AHI ≥ 5 events/hour.  Sleep onset was associated with decreased VT and 

VE in participants with cSCI and SDB, but not in AB subjects with SDB (Table 4). 

Changes in other ventilatory parameters are detailed in Table 4. Thus, cSCI with SDB 

have a significantly greater reduction in ventilation with sleep onset compared to AB 

subjects with SDB.   
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Table 3. Cervical vs. Thoracic SCI: Sleep Onset Ventilation 

              cSCI    tSCI 

 Alpha Theta Alpha Theta 

Frequency 
(breaths/min) 

14.7±3.3 14.2±4.5 15.9±3.0 15.7±2.9 

Ti (sec) 1.9±0.4 1.7±0.4ǂ 1.7±0.3 1.6±0.3 

Te (sec) 2.5±0.7 3.51±2.0 2.3±0.7 2.4±0.6 

Ti/Ttot 0.44±0.04 0.38±0.09ǂ 0.43±0.06 0.42±0.06 

SaO2 (%) 95.8±1.3 95.1±1.6 96.6±1.4 96.7±1.4* 

PETCO2 

(mmHg) 

38.9±3.2 41.3±4.1ǂ 38.9±1.7 39.5±1.8 

PETO2 
(mmHg) 

94.3±4.8 90.6±6.8ǂ 93.8±10.1 92.0±10.6 

 

RUA 
(cmH2O/L/sec) 

3.61±1.7 3.5±1.9 3.5±1.4 3.6±1.7 

All data mean ± S.D.  cSCI: cervical SCI; tSCI: thoracic SCI. cSCI n=10, tSCI n=8. * 
between-group (cervical vs. thoracic) difference P˂0.05, ǂ within-group difference 

(alpha vs. theta)  P˂0.05.  Ti: inspiratory time, Te: expiratory time, Ti/Ttot: ratio of Ti to 

total cycle time, RUA: upper airway resistance. 
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Table 4. Cervical SCI vs. Able-Bodied Subjects: Effect of Sleep Disordered 

Breathing on Sleep Onset Ventilation  

 cSCI Able-Bodied 

 Alpha Theta Alpha Theta 

Frequency 

(breaths/min) 

 

14.4±3.5 13.9±5.1 15.7±2.3 17.3±3.2 

VE (L/min) 
7.4±2.6 4.4±1.8ǂ 6.6±2.4 6.1±2.1 

VT (L) 
0.58±.26 0.30±0.12ǂ 0.43±0.18 0.37±0.16 

Ti (sec) 2.0±0.5 1.8±0.4ǂ 1.7±0.1 1.5±0.2 

Te (sec) 2.6±0.7 3.8±2.1ǂ 2.2±0.6 2.1±0.7* 

Ti/Ttot 0.44±0.04 0.37±0.09ǂ 0.43±0.06 0.44±0.07 

SaO2 (%) 95.8±1.4 95.1±1.8 96.0±1.3 96.1±1.1 

PETCO2 

(mmHg) 
39.3±3.1 41.6±3.4ǂ 39.6±2.6 39.8±2.2 

PETO2 

(mmHg) 
94.6±5.0 91.4±6.5ǂ 101.1±4.2 100.4±5.9* 

RUA 
(cmH2O/L/sec) 

3.4±1.3 3.2±1.7 4.3±2.9 4.8±5.2 

All data mean ± SD.  cSCI: cervical SCI;  cSCI n= 8, able-bodied (AB) n=8. * between-

group (cSCI vs. AB) difference p˂0.05, ǂ within-group difference (alpha vs. theta) 

p˂0.05.  VE: minute ventilation, VT: tidal volume, Ti: inspiratory time, Te: expiratory time, 

Ti/Ttot: ratio of Ti to total cycle time, RUA: upper airway resistance. 
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Comparison of ventilation with REM onset in cervical and thoracic SCI and able-bodied 
subjects 

To ascertain the relative contribution of the loss of intercostal muscle activity on sleep 

onset hypoventilation, we compared the ventilatory changes during non-REM to REM 

transitions. We reasoned that the magnitude of non-REM to REM ventilatory changes 

would be attenuated in individuals with cSCI because of the loss of intercostal muscle 

activity. There was a paucity of REM sleep in all subjects, owing to the high level of 

instrumentation in our protocols.  We identified non-REM to REM transitions in a sub-set 

of 3 cSCI individuals, 2 tSCI subjects and 3 AB subjects. A single transition from non-

REM to REM sleep was analyzed for each subject (3 transitions in cSCI and AB, 2 

transitions in tSCI group). The 10 non-REM breaths immediately prior to REM onset 

were analyzed for tidal volume in each group, as well as for the first 10 breaths of REM 

sleep. Any breaths associated with an arousal were not included in the analysis. The 

onset of REM was determined using the AASM 2007 guidelines (Iber et al., 2007). REM 

segments exhibited the following features: low-amplitude, mixed-frequency EEG 

activity, absence of K complexes and sleep spindles and decrease in chin tone with 

rapid eye movements following within 1 epoch as determinants of the exact point of 

REM onset.  

Figures 7 and 8 depict representative polygraphs of EEG frequencies and 

respiration during the transition from non-REM to REM sleep in a cSCI and AB subject, 

respectively.  Able-bodied subjects had a larger drop in ventilation with REM onset than 

SCI subjects (Table 5). 
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Figure7. Ventilation during Transition from Non-REM to REM Sleep in Spinal Cord 
Injury 

Panel A: A 30 second polygraph with EEG and EMG recording in a cervical (C7, 
complete injury) SCI individual (28 year old male, BMI 31.0 kg/m2) during the transition 
from NREM to REM sleep. E: eye, M: mastoid ground, C: central, O: occipital. Panel B: 
A 30 seconds polygraph with ventilation recording, time matched to the EEG data in 
panel A. Note the absence of a large drop in flow and tidal volume coinciding with REM 
onset in this cervical SCI subject compared to an able-bodied subject in Figure 8.  
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Figure 8. Ventilation during Transition from Non-REM to REM Sleep in an Able-
bodied Subject 

Panel A: A 30 second polygraph with EEG and EMG recording in an able-bodied control 
subject (68 year old male, BMI 23.6 kg/m2) during the transition from NREM to REM 
sleep. E: eye, M: mastoid ground, C: central, O: occipital. Panel B: 30 A seconds 
polygraph of ventilation recording, time matched to the EEG data in panel A. Note the 
large drop in flow and tidal volume with REM onset in this able-bodied subject.  
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Table 5. Tidal Volume During Non-REM to REM Transitions 

 Non-REM REM 

cSCI   

1c 763.8±93.2 710.6±155.4 

2c 295.5±56.5 269.2±106.8 

3c 232.5±40.9 290.4±81.6 

tSCI   

1t 279.9±47.2 212.6±128.4 

2t 249.3±93.6 247.3±51.3 

Able-Bodied   

1AB 448.7±42.5 322.9±148.0 

2AB 434.0±22.4 394.3±71.1 

3AB 470.8±26.9 153.4±85.3 

cSCI: cervical SCI; tSCI: thoracic SCI; Tidal Volume (mL). Non-

REM: average of the 10 breaths of non-REM sleep just prior to REM 

onset for each subject ± S.D.  REM: average of the first 10 breaths 

in REM sleep for each subject ± S.D. Each subject is denoted by a 

number followed by c for cervical SCI, t for thoracic SCI or AB for 

able-bodied. 
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Discussion 

Summary of findings 

The purpose of this study was to identify the ventilatory changes at sleep onset 

during the transition from alpha to theta EEG frequencies. The major findings of this 

study were: 1) Sleep onset was associated with hypoventilation in individuals with 

chronic SCI compared to able-bodied subjects.  2) Sleep onset hypoventilation was 

predominantly present in participants with cervical but not thoracic SCI, and 3) There 

was no change in upper airway resistance in either group.  

 

The effect of sleep onset on ventilation and timing in spinal cord injury 

The current study demonstrated that the loss of the wakefulness stimulus to 

breathe was associated with decreased VE and increased PETCO2 in individuals with 

SCI but not in able-bodied participants. Decreased ventilation was not due to increased 

upper airway resistance. Thus, altered upper airway mechanics were not responsible for 

the sleep onset hypoventilation in individuals with SCI.  

Evidence in the literature suggests that sleep onset is associated with transient 

breathing instability and a decrease in ventilation, even in healthy individuals (Douglas 

et al., 1982; Colrain et al., 1987; Trinder et al., 1992; Dunai et al., 1999). Trinder and 

colleagues reported a 19% drop in VT during alpha to theta transitions in healthy adult 

males and a 13% decrease in females (Trinder et al., 1992). Our study did not consider 
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gender differences, but we found no significant (<10%) decrease in VT in theta 

compared with alpha in the AB group; the reasons for the difference in findings is 

currently unclear.  

 Putative Mechanisms of Sleep Onset Hypoventilation in SCI 

The major finding in our study was a greater drop in VT at sleep onset in SCI 

compared to able-bodied individuals. Moreover, VT drop was related to the level of injury 

and was greater in cervical SCI, who have significant ventilatory instability in 

comparison to able-bodied subjects (Sankari et al., 2014a). Consistent with previous 

work (Kay et al., 1996), we found that upper airway resistance does not explain the 

decrease in ventilation at sleep onset. We therefore suggest that other factors that may 

contribute to ventilatory instability during sleep onset such as state-related fluctuations 

in the drive to the primary respiratory muscles and variability in compensatory 

mechanisms. 

We considered several possible mechanisms of sleep-onset hypoventilation in 

SCI subjects. First, chest wall deformities, such as in mid- and high thoracic SCI, might 

contribute to increased mechanical loading and reduced lung volume leading to 

hypoventilation (Castriotta and Murthy, 2009). Second, reduced central ventilatory drive 

may cause hypoventilation in subjects with SCI, especially cervical SCI (Manning et al., 

1992).  There is evidence from animal studies that central ventilatory drive may be 

diminished in cervical SCI (Zimmer and Goshgarian, 2007). This is unlikely in our study 

as there was no difference in ventilation or PETCO2 during wakefulness in SCI vs. able-
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bodied control subjects. Whether SCI is associated with a more pronounced sleep-

related decrease in central ventilatory motor output cannot be determined from our data.   

Third, sleep onset hypoventilation may be influenced by peripheral 

chemoreceptor activity. A previous study suggested an interaction between chemical 

stimuli and state effects on ventilation during sleep-onset (Dunai et al., 1999). 

Specifically, individuals with increased peripheral chemoreceptor activity displayed 

amplified state-related changes in ventilation and subsequent dampening following 

hyperoxic exposure. However, sleep onset hypoventilation was more pronounced in 

cervical SCI subjects even when compared to able-bodied individuals with SDB, a 

group that is known to have augmented peripheral chemoreceptor activity.  

Finally, individuals with spinal cord injury are more susceptible to sleep onset 

hypoventilation than healthy individuals, owing to the denervation of some, or all, 

intercostal muscles (8, 20, 29). Evidence in the literature suggests that rib cage 

contribution to VT increases by 20% during non-REM sleep relative to wakefulness (28). 

Therefore, we interpret accentuated sleep-onset hypoventilation in individuals with 

tetraplegia as secondary to loss of intercostal muscle activity. The attenuation of non-

REM to REM hypoventilation in subjects with cervical spine injury supports this 

interpretation. However, our study precludes drawing firm conclusions regarding the 

relative contribution of the loss of intercostal muscle activity versus increased peripheral 

chemoreceptor activity on sleep-onset hypoventilation. In summary, our study 

demonstrated an augmented sleep-related hypoventilation in patients with SCI, mostly 

in subjects with cervical SCI and without significant changes in upper airway resistance.    
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Physiologic Implications 

Sleep-onset hypoventilation may contribute to sleep-related breathing instability. 

Individuals with SCI can maintain stable sleep and alveolar ventilation despite modest 

hypoventilation. However, significant hypoventilation may occur in individuals with a 

high spinal level of SCI and abnormal respiratory mechanics or those who use CNS 

suppressing medications. Sankari and colleagues have previously shown that 

tetraplegia is a risk factor for central apnea owing to increased plant gain (Sankari et al., 

2014b). Therefore, sleep onset hypoventilation may increase the propensity to develop 

central apnea by increasing plant gain. The ensuing sleep fragmentation may lead to 

ventilatory overshoot and recurrent episodes of apnea/hypopnea alternating with 

hyperpnea (Douglas et al., 1982; Douglas, 1992; Badr, 2005; Eckert et al., 2007; 

Yumino and Bradley, 2008; Nemati et al., 2011). Therefore, sleep-onset hypoventilation 

may promote the development of recurrent central apnea and sleep-related breathing 

instability in subjects with SCI.  

Conclusions 

  We have shown the occurrence of significant sleep-onset hypoventilation in 

patients with chronic SCI compared to able-bodied subjects. The magnitude of sleep 

onset hypoventilation is not associated with increased upper airway resistance and is 

related to the level of SCI. Diminished neuromuscular output owing to intercostal muscle 

paralysis could play a role in the development of sleep apnea post-injury to the cervical 

spine. 
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CHAPTER 2 

The Role of Chemoreflexes in Breathing Instability and Sleep 
Disordered Breathing in Chronic Spinal Cord Injury  

 

Introduction 

The incidence of spinal cord injury (SCI) is estimated to be 12,500 new cases 

each year in the United States alone. Approximately 59% of cases result in tetraplegia 

(NSCISC Facts and Figures at a Glance, 2014). While less than 10% of SCI patients 

will require mechanical ventilatory support beyond 1 year of injury, respiratory 

complications (i.e. pneumonia)  remains the primary cause of death after SCI (NSCISC 

2013 Report). Patients with cervical (cSCI) and high thoracic (tSCI) injuries are at the 

greatest risk for respiratory-related complications due to impairment of neural outflow to 

critical respiratory muscles.  

Sleep disordered breathing (SDB) is a major cause of morbidity and impaired 

quality of life in patients with SCI. Recent reports found that more than half of SCI 

patients developed SDB in their first year post-injury (62% have AHI >10 event/hour). In 

fact, SCI may be an independent risk factor for the development of SDB (Sankari et al, 

2014b).  Berlowitz and colleagues (2005) followed a cohort of cSCI patients from the 

acute  to the chronic phase of injury and reported that at 2 weeks post-injury 60% had 

SDB (apnea hypopnea index >10) , the incidence rose to 83% by week 13, and fell to 
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62% by 52 weeks (Berlowitz et al., 2005). Other studies published over the past 2 

decades by various investigators have placed the prevalence of SDB to be between 27-

77% (Star et al., 1988; Bonekat et al., 1990; Short et al, 1992; Levi et al., 1995; McEvoy 

et al., 1995; Klefbeck et al., 1998; Burns et al., 2000; Stockhammer et al., 2002; Biering-

Sorenson et al., 2009; Sankari et al., 2014a).  

The specific type of SDB experienced after SCI is a matter of debate. The 

majority of studies places SDB in SCI under the classification of obstructive sleep apnea 

(OSA). However, Sankari et. al. (Sankari et al., 2014a) studied a group of 26 

consecutively enrolled chronic SCI subjects (15 cSCI, 11 tSCI) and reported that 

approximately 93% of cervical and 55% of thoracic SCI patients had symptomatic SDB 

as defined by an apnea hypopnea index (AHI) >5 events per hour and excessive 

daytime sleepiness. Another significant finding of this study was that the majority of 

cSCI had central sleep disordered breathing (CSDB) and periodic breathing (PB) (60%) 

in the absence of heart disease and irrespective of narcotic use, compared to tSCI 

subjects who primarily exhibited OSA (18% had CSA and 27% had PB) (Sankari et al, 

2014a). Central SDB occurs in <1% of the general adult population and is typically 

found in patients with systolic heart failure, those ascending to high altitudes, and opiate 

users (White et al., 2005; Panossian et al., 2009), although some studies report that the 

incidence of CSA increases with age (Wellman et al., 2007). Central sleep apnea can 

also occur concomitantly with OSA (Morgenthaler et al., 2007; Salloum et al., 2010; 

Chowdhuri et al, 2012). One reason for the common classification of SDB in SCI as 

OSA may be due to the insensitivity of diagnostic methods to differentiate between 

central and obstructive events (Yumino and Bradley, 2008). Sankari and colleagues 
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used quantitative flow via pneumotachometer and a pressure tipped airway catheter 

which allows for greater accuracy in diagnosing types of events compared to methods 

commonly used by other investigators (Sankari et al., 2014a).  

The mechanisms underlying the increase in CSDB and PB in chronic SCI are not 

understood. In SCI, one proposed mechanism for CSDB and PB is sleep-related 

hypoventilation (Castriotta and Murthy, 2009). Our lab has observed that patients with 

SCI, particularly cSCI, demonstrate significant sleep onset hypoventilation compared 

with subjects with tSCI and able-bodied controls (Bascom, unpublished observations, 

See Chapter 1). Sleep onset hypoventilation leads to frequent arousals from sleep, 

significant fluctuations in end-tidal CO2 and O2 (PETCO2, PETO2, respectively), increased 

plant gain, and a narrowed CO2 reserve, all of which set the stage for breathing 

instability (Dempsey, 2004). Trinder and colleagues (1993) reported a positive 

correlation between able-bodied subjects who had a large magnitude of sleep onset 

hypoventilation (during the transition from wake to stable non-REM sleep) and breathing 

instability and the degree of respiratory instability during stable sleep (Trinder et al., 

1993). Based on the findings in by Trinder and colleages (1993), Dunai and colleagues 

(1996) postulated that both state-related fluctuations in ventilation and chemical 

influences (i.e. chemoreflexes) may work together during sleep to create breathing 

instability and induce perturbations. Delays in feedback to the peripheral 

chemoreceptors, that are inherent in the respiratory feedback loop, may accentuate 

state-related instability (Dunai et al., 1996). To test this hypothesis Dunai and 

colleagues (1996) identified 2 groups of able-bodied subjects with low and high 

peripheral chemoreceptor drive and examined state-related fluctuations in ventilation 
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during sleep onset. They reported that subjects with high peripheral chemoreceptor 

drive exhibited a significantly greater magnitude sleep onset ventilatory instability and 

hypoventilation than subjects with low peripheral chemoreceptor drive. Furthermore, this 

hypoventilation was mitigated with hyperoxia administration. They concluded that 

heightened peripheral chemoreceptor activity can contribute to SDB (Dunai et al, 1996 

and 1999).  

Indeed, altered chemoresponsiveness has been implicated in CSDB and 

breathing instability by several investigators (Khoo et al., 1982; Dempsey 2004; Eckert 

et al., 2007; Yumino and Bradley, 2008) and may be an important mechanism in the 

development of SDB in chronic SCI.  High chemoreflex sensitivity leads to ventilatory 

overshoot in response to relatively small perturbations, destabilizes breathing, and 

predisposes individuals to CSDB and PB (Dempsey, 2004). The peripheral 

chemoreceptors serve to respond rapidly to adjust ventilation in response to changes in 

O2 and CO2 on a breath-by-breath basis and have been proposed as a key component 

of the ventilatory feedback loop for producing breathing instability in the face of 

feedback delays (Khoo et al., 1982; Longobardo et al., 1982; Younes, 1989).  

 There have been no studies reported that specifically focused on peripheral 

chemoreceptor responsiveness in SCI. The majority of studies have reported blunted 

hypercapnic ventilatory response (HCVR) (Kelling et al., 1985; McCool et al, 1988; 

Manning et al., 1992), which is a measure of peripheral and central chemosensitivity, 

while other investigators have found no significant difference in sensitivity to steady-

state hypoxia and hypercapnia compared with able-bodied controls (Pokorski et al., 

1990 and 1995; Ben-Dov et al., 2009). Since peripheral chemoreceptors respond very 
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rapidly, on a breath-by-breath basis, chemical stimuli that are rapidly administered and 

brief would best take advantage of their specific time response characteristics in order 

to avoid involving the slower responding central chemoreflexes (Black et al.,1967; 

Dutton et al.,1967; Gelfand and Lamberton , 1973).  

Brief hyperoxia has long been established as having an inhibitory effect on the 

carotid body, causing a short-lived decrease in ventilation which has been used as a 

measure of the contribution of the carotid bodies to eupneic breathing (Dejours, 1962; 

Daristotle et al., 1991; Cutz et al., 1997; Gautier 2003).  The use of hyperoxia to assess 

peripheral chemoreceptor tonic drive has well established validity, is safe and well 

tolerated by subjects.  

McClean and colleagues (1988) utilized a similar method of targeting carotid 

body response to CO2 by administering a single breath of CO2 gas via inhalation, and 

measuring the ventilatory response to this brief stimuli (McClean et al., 1988, Martinez, 

2008). The response to brief CO2 administration is a transient (within 10 seconds)  

increase in tidal volume (VT). The time course of this response suggests it is a function 

of peripheral chemoreceptor, as opposed to central chemoreceptors that would require 

up to 60 seconds to manifest (Black and Torrance, 1966; Dutton et al., 1967, Gray, 

1968; Gelfand and Lamberto, 1973). The combination of these two interventions (brief 

hyperoxia and hypercapnia) would allow for the assessment of carotid body 

chemoreflex responses to O2 and CO2 stimuli.  

The hypotheses proposed in my studies are: 1) subjects with chronic SCI will 

have a higher peripheral chemoreceptor contribution to eupneic breathing, as evidenced 
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by a greater magnitude of decrease in ventilation in response to transient hyperoxia, 

and 2) subject with SCI will have a heightened ventilatory response to transient 

hypercapnia compared to able-bodied subjects. In order to test these hypotheses, I 

administered rapid, but brief chemical stimuli to determine the ventilatory response to 

O2 and CO2 in both groups of subjects.  

 Materials and Methods 

Protocols were approved by the Human Investigation Committee of the John D. 

Dingell Veterans Affairs Medical Center and Wayne State University (Detroit, MI) and 

written informed consent was obtained.  

We studied adults (≥18 years old) with chronic SCI and able-bodied participants 

if they met the inclusion and exclusion criteria. All subjects were instructed not to have 

alcohol, caffeine products or sedatives on the day of the study.  

Inclusion Criteria- participants with chronic SCI (>6 months post-injury), spanning 

the spectrum from cervical (cSCI, C4-C7) to thoracic levels (tSCI, T1-T6) (complete and 

incomplete injuries). Able-bodied subjects (AB) were recruited with similar 

demographics to the SCI group for age, body mass index (BMI) and gender.  

Exclusion criteria-Participants were excluded from the study for any of the 

following: (1) pregnant or lactating females; (2) currently ventilator dependent or with 

tracheostomy tube in place; (3) history of cardiac disease including heart failure, 

peripheral vascular disease, or stroke; (4) history of head trauma resulting in 

neurological symptoms or loss of consciousness; (5) advanced lung, liver, or chronic 
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kidney disease; (6) extreme obesity, defined for this protocol as BMI >38 kg/m2; or (7) 

other illness that would interfere with completion of the study.  

Subjects first underwent overnight in-lab polysomnography (PSG) to determine 

the presence or absence of sleep disordered breathing (apnea hypopnea index, 

events/hour; AHI) (Comet PSG System, AS40 Model or the Heritage II PSG System; 

Grass Technologies, Warwick, RI). PSG studies were scored according to American 

Academy of Sleep Medicine (AASM) 2012 recommended criteria (Berry et al., 2012). 

On a separate visit, subjects arrived at the lab between 10 am-4 pm for study. 

Studies were performed in the supine position during wakefulness. Instrumentation 

included electrocardiogram (ECG), electroencephalogram (EEG), electrooculograms 

(EOG) and chin electromyograms (EMG) using the International 10-20 system of 

electrode placement (EEG: C3-A2 and C4-A2; EOG: O-A2). Subjects wore a nasal 

mask connected to a pneumotachometer (Hans Rudolph, Model 3700A, Shawnee, KS) 

that measured airflow. Tidal Volume (VT) was determined via integration of the 

pneumotachometer flow signal. End-tidal carbon dioxide (PETCO2), end-tidal oxygen 

(PETO2) levels and inspired O2 levels (FiO2) were measured with CO2 and O2 gas 

analyzers (Vacumed Model 17515 and 17518 respectively, Ventura, CA). Pulse 

oximetry was measured by an ear probe (Biox 3740, Datex-Ohmeda Inc, Madison, WI). 

Respiratory effort was measured by respiratory inductance plethesmography (RIP) belts 

placed on the chest and abdomen (Q-RIP, Braebon Medical Corp., Ogdensburg, NY). 

Ventilation data from the pneumotachometer, pulse oximeter and gas analyzers were 

digitized and analyzed using a PowerLab Data Acquisition System (Model 16SP, 



www.manaraa.com

49 

 

ADInstruments Inc., Colorado Springs, CO). Electroencephalograph, EMG, EOG, ECG, 

and respiratory effort were recorded and analyzed via the Comet PSG system (AS40 

amplifier) or Heritage II system (Grass Technologies, Warwick, RI). EEG was used to 

verify that subjects remained in stable wakefulness during interventions. Medical 

adhesive tape was placed over subject’s lips to help prevent mouth breathing. 

Spontaneous ventilation was recorded for a minimum of 15 minutes prior to any 

intervention. Subjects were instructed that CO2 or O2 would intermittently be 

administered through the nasal mask for a short period of time, in random order, and 

that they were to breathe through their nose. If mouth breathing occurred, tape was 

replaced and the subject was again instructed not to breathe through their mouth. The 

order of interventions (hyperoxia vs. single breath CO2) was randomized to eliminate 

order effect. 

Hyperoxia Methods 

   Oxygen was bled into a port on the mask through O2 tubing attached to a gas 

tank containing 100% O2. Flow was quickly increased to 12-15 L/min until inspired O2 

values reached ≥ 50% in the mask. O2 administration was continued for 1 minute 

followed by 5 minutes of room air breathing between trials. Trials were repeated 3 

times. A representative example of a hyperoxia test in a cSCI subject is depicted in 

Figure 9 and an AB subject in Figure 10.  

Analysis consisted of comparing the average of 10 baseline room air breaths 

immediately preceding hyperoxia with the nadir VT breath within the first 30 seconds of 

hyperoxia. Results of 3 trials per subject were averaged. In one instance in a cSCI 
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subject, only 2 reproducible trials were obtained, so in this case the average of 2 trials 

was used. Ventilation (minute ventilation [VE], VT, and frequency) for the nadir breath 

during hyperoxia was expressed as a percentage of the baseline room air ventilation.  

Nadir hyperoxia ventilation was compared between SCI and AB subjects.  In addition,  
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Figure 9: Effect of Transient Hyperoxia on Ventilation in Spinal Cord Injury 

 A representative polygraph of a 1 minute hyperoxia trial in a 38 year old male cervical 
SCI subject (BMI 28.2 kg/m2). Baseline ventilation on room air preceding hyperoxia is 
followed by a striking decrease in tidal volume during hyperoxia administration. VT: tidal 
volume, PETCO2: end-tidal CO2, PETO2: end-tidal O2, SaO2: oxygen saturation; FiO2: 
concentration of inspired O2.   
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Figure 10: Effect of Transient Hyperoxia on Ventilation in an Able-Bodied Subject 

A representative polygraph of a 1 minute hyperoxia trial in a 56 year old male able-
bodied subject (BMI 25.8 kg/m2). Baseline ventilation on room air preceding hyperoxia 
is followed by a smaller decrease in tidal volume during hyperoxia administration 
compared to that in Figure 1. VT: tidal volume, PETCO2: end-tidal CO2, PETO2: end-tidal 
O2, SaO2: oxygen saturation; FiO2: concentration of inspired O2.   
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average time (in seconds) to nadir breath during hyperoxia and average inspired % O2 

(FiO2) were calculated and compared between groups.  

A sub-analysis was performed to compare the response to transient hyperoxia in 

cervical vs. thoracic SCI subjects to determine if spinal injury level influences the 

response. In addition, analyses were performed for all subjects to determine if AHI 

correlates with the ventilatory response to hyperoxia.  

Single Breath CO2 Methods 

Single breath CO2 tests (SBCO2) using the instrumentation and conditions 

described above were performed.  While breathing room air, CO2 was bled into a port 

on the mask via small bore tubing connected to a gas blender (Model PMR4, 

Orangeburg, NY), which was in turn connected to a gas tank containing 40% CO2 

balanced with N2.  Gas flow was adjusted to reach a target of 8-10% inspired CO2 for a 

single breath. Flow was adjusted to administer approximately 8-10% inspired CO2 

during expiration of one breath to load the circuit and continued until peak inspiration of 

the following breath before being abruptly terminated. Figures 11 and 12 demonstrate 

trials of SBCO2 in a cSCI and AB subject, respectively. Trials were preformed 3 times 

with 2-3 minutes between trials.  
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Figure 11: Effect of Transient Hypercapnia on Ventilation in Spinal Cord Injury 

A representative polygraph of a single breath CO2 test in a 28 year old male cervical 
SCI subject (BMI: 31.5 kg/m2). Baseline room air ventilation is compared with the 
response breath (largest VT within 5 breaths of CO2 ) after administration of 1 breath of 
CO2 (“CO2 stimulus breath”). Note the large increase in tidal volume in the response 
breath after CO2 administration in a SCI subject compared to the response breath in 
Figure 12, an able-bodied subject.  VT: tidal volume, PETCO2: end-tidal CO2, PETO2: end-
tidal O2, SaO2: oxygen saturation; FiO2: concentration of inspired O2. ∆PETCO2:PETCO2 
after CO2 administration minus the average PETCO2 for baseline room air breaths prior 
to test. 
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Figure 12: Effect of Transient Hypercapnia on Ventilation in an Able-bodied 
Subject 

A representative polygraph of a single breath CO2 test in a 30 year old male able-
bodied subject (BMI: 22.9 kg/m2). Baseline room air ventilation is compared with the 
response breath after administration of 1 breath of CO2 (“CO2 stimulus breath”). Note 
the relatively small increase in tidal volume in the response breath (largest VT within 5 
breaths of CO2) after CO2 administration of the able-bodied subject in this figure, 
compared to the response in Figure 11, a SCI subject.  VT: tidal volume, PETCO2: end-
tidal CO2, PETO2: end-tidal O2, SaO2: oxygen saturation; FiO2: concentration of inspired 
O2.  ∆PETCO2:PETCO2 after CO2 administration minus the average PETCO2 for baseline 
room air breaths prior to test.  
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 Analysis consisted of averaging the 5 breaths of baseline room air ventilation (VE 

and PETCO2) immediately prior to CO2 administration for comparison with the “response 

breath”, which was taken as the largest breath based on VT within the first 5 breaths 

after administration. The chemoreflex response to a single breath of CO2 was calculated 

as ∆VE/∆CO2 (L/min/mmHg). In addition, the VT and VE of the response breath was 

expressed as a percentage of the average VT and VE, respectively, for baseline room air 

breaths. Time from CO2 breath to response breath was calculated in seconds, as well 

as average inspired CO2. Results were averaged for 3 trials in each subject and 

outcomes were compared between SCI and AB groups.  

A sub-analysis was performed to compare the response to a single breath of CO2 

in cervical vs. thoracic SCI subjects to determine if spinal injury level influences the 

response. In addition, analysis was for all subjects to determine if AHI correlates with 

SBCO2 response.  

Statistical Analysis 

T-tests were used to compare outcome measures and demographic data 

between the SCI and AB groups, or between cSCI and tSCI, when data was normally 

distributed. If data was not normally distributed, non-parametric tests were employed 

(SigmaPlot 12.1). Pearson Product Moment Correlation was performed to determine the 

relationship between AHI and ventilatory response to chemical stimuli. All data are 

reported as mean ± SD and significance was set at p<0.05. 

Results 
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Hyperoxia in SCI vs. Able-bodied Subjects 

Fifteen subjects with chronic SCI and 15 AB subjects with similar demographics 

(Table 6) were studied to determine the ventilatory response to hyperoxia. Figure 13 

illustrates that SCI subjects had a significant decrease in VT (63.4±21.7 % baseline) and 

VE (63.1±23.0 % baseline) with hyperoxia compared to AB subjects (VT: 87.1±14.3 % 

baseline, VE: 91.38±15.1 % baseline), while frequency was not different in either group. 

The time from initiation of hyperoxia to the nadir breath was similar in both groups (SCI: 

20.2±3.6 sec. AB: 18.3±5.4 sec, p=0.26) as was the average FiO2 administered for all 

hyperoxia trials (SCI: 73.0±11.5% vs. AB: 71.2±8.7%, p=0.63). There was no significant 

correlation between AHI and VE% baseline (r=-0.28) in SCI and AB (n=30). Subjects 

with SCI had a greater magnitude of inhibition of peripheral chemoreceptors in response 

to brief hyperoxia than able-bodied subjects.  
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Table 6. Subject Characteristics 

 Hyperoxia Single Breath CO2 

   

 SCI Able-Bodied SCI Able-Bodied 

N 15 15 12 12 

Age (years) 40.7±13.4 41.3±18.3 39.8±13.2 41.3±16.6 

BMI (kg/m2) 25.8±5.4 27.4±4.1 27.0±5.1 26.9±4.1 

Gender (M/F) 11/4 10/5 9/3 9/3 

AHI (events/hour) 20.0±17.4 11.7±18.2 21.2±19.3 12.7±20.3 

Injury level 

(cervical/thoracic) 

8/7 __ 6/6 __ 

All data Mean ±SD.  BMI: Body Mass Index, AHI: Apnea Hypopnea Index. No significant 
difference in age, BMI, gender or AHI (p >0.05).  
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Figure 13: Comparison of Response to Hyperoxia in Spinal Cord Injury and Able-
bodied Subjects 

Minute ventilation (VE), tidal volume (VT) and frequency (Freq) during hyperoxia 
administration in spinal cord injury (SCI) and able-bodied (AB) subjects are expressed 
as a percentage of baseline room air ventilation prior to intervention. SCI subjects had a 

significant decrease in VE and VT with hyperoxia (*p<0.001, ǂ p=0.001) compared to AB 

subjects. There was no significant change in frequency in either group (p=0.43). 
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Hyperoxia in Cervical vs. Thoracic SCI Subjects 
 

To determine the effect of spinal injury level on ventilatory response to transient 

hyperoxia, cSCI (n=8) vs. tSCI (n=7) subjects were compared (Table 7). There was no 

significant difference in the nadir breath VT or VE or frequency expressed as a % of 

baseline ventilation during hyperoxia trials. Results are detailed in Table 8. There was 

no difference in time to response to hyperoxia (cSCI: 21.4±3.8 sec, tSCI: 18.7±30. sec; 

p=0.8), or average trial FiO2 (cSCI: 72.9±9.2%, tSCI: 73.2±14.4%; p=0.96). There was 

no significant correlation between AHI and SBCO2 response in SCI subjects (n=15) (r=-

0.40). Thus, injury level had no effect on ventilatory response to brief hyperoxia.  
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Table 7. Cervical and Thoracic SCI Subject Characteristics 

 
Hyperoxia Single Breath CO2 

   

 Cervical Thoracic Cervical Thoracic 

N 8 7 6 6 

Age (years) 42.5±13.0 38.7±14.7 40.5±11.0 39.0±16.1 

BMI (kg/m2) 24.4±5.7 27.4±4.9 26.2±5.4 27.8±5.2 

Gender (M/F) 7/1 4/3 5/1 4/2 

AHI (events/hour) 29.0±16.5 9.6±12.4* 33.2±17.0 9.2±13.6ǂ 

All data Mean ±SD.  BMI: Body Mass Index, AHI: Apnea Hypopnea Index. No 
significant difference in age, or gender. (p >0.05). AHI significantly higher in cervical 

vs. thoracic SCI subjects (* p=0.02, ǂ p=0.03). 
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Table 8. Cervical vs. Thoracic SCI Chemoresponse Ventilation  

 Hyperoxia  Single Breath CO2  

     

 Cervical Thoracic p value Cervical Thoracic p value 

N 8 7  6 6  

VE 

(% BASELINE) 

54.5±21.3 72.9±22.1 0.13 172.9±40.3 153.3±23.2 0.33 

VT 
(% BASELINE) 

55.8±20.1 72.1±21.5 0.15 208.9±52.9 157.6±30.4 0.07 

FREQUENCY 
(% BASELINE) 

99.9±33.6 99.1±13.0 1.0 __ __  

SBCO2 
(L/MMHG) 

__ __  0.82±0.48 0.74±0.39 0.75 

 All data Mean ±SD.  SBCO2: Ventilatory Response to a single breath of CO2 
(∆VE/∆CO2). No significant difference in any chemoreflex responses between 
cervical and thoracic SCI subjects.  
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Single Breath CO2 in SCI vs. Able-bodied Subjects  

Twelve subjects with chronic SCI and 12 AB subjects with similar demographics 

(Table 6) were studied to determine the response to a single breath of hypercapnia. The 

ventilatory response to SBCO2 (∆VE/∆CO2) was significantly higher in the SCI group 

compared with the AB group, as detailed in Figure 14. Tidal volume for the response 

breath after CO2 administration, expressed as a percentage of baseline room air 

ventilation, was also significantly increased in SCI compared to AB subjects 

(183.2±49.1 % vs. 125.7±13.6%, respectively, p<0.05). Similarly, VE increased to a 

greater degree in SCI subjects compared to AB subjects (163.1±33.0 % vs. 

118.5±4.8%, respectively, p<0.05). The average inspired CO2 for SBCO2 trials was not 

different between SCI and AB groups (8.7±1.6% vs. 8.0±1.3%, respectively, p=0.24) nor 

was the time from CO2 administration to the response breath (SCI: 10.6±4.2 sec; AB: 

11.9±4.1 sec, p=0.44). No significant correlation was found between AHI and SBCO2 

response in SCI and AB subjects (n=24) (r=0.27). 
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Figure 14: Comparison of Response to Brief Hypercapnia in Spinal Cord Injury vs. 
Able-bodied Subjects 

The ventilatory response to a single breath of CO2 (SBCO2 L/min/mmHg) was 
significantly higher in SCI subjects compared to able-bodied subjects (AB) (*p<0.001).  
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Single Breath CO2 in Cervical vs. Thoracic SCI Subjects 
 

In order to determine the contribution of spinal injury level to the response to a 

single breath of CO2, cervical (n=6) vs. thoracic (n=6) SCI subject’s responses were 

compared. Table 7 describes the characteristics of the cervical and thoracic SCI groups. 

There was no difference in SBCO2 (∆VE/∆CO2) response between cSCI and tSCI 

subjects (Table 8). Similarly, no difference was found in VE or VT expressed as a 

percentage of baseline ventilation between injury levels (Table 8). In addition, no 

difference was found in time from inspiration of CO2 to response between cSCI 

(12.0±5.6 sec) and tSCI subjects (9.2±1.8 sec; p=0.28).  The inspired CO2 level for trials 

were not different between groups (cSCI: 8.9±1.4%, tSCI: 9.2±1.8; p=0.59). There was 

no significant correlation between AHI and SBCO2 response in SCI subjects (n=12) 

(r=0.27).  

Discussion 

The purpose of this study was to determine the peripheral chemoreflex 

responses to brief hyperoxia and hypercapnia in chronic SCI and AB subjects. The 

major findings of the study were: 1) Subjects with SCI have a greater magnitude of 

reduction in ventilation in response to brief hyperoxia than AB. 2) SCI participants had a 

greater ventilatory response to a single breath of CO2 than AB. 3) There was no 

difference in peripheral chemoreceptor response to brief hyperoxia or hypercapnia in 

cervical vs. thoracic SCI. 4) Peripheral chemoresponsiveness was not significantly 

correlated with AHI in SCI and AB subjects.  
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Peripheral chemoreceptor response to transient hyperoxia 

The carotid body supplies a tonic excitatory input to central respiratory centers 

and contributes to eupneic ventilatory drive. Peripheral chemoreceptors are of great 

importance in maintaining ventilatory homeostasis during non-REM sleep when 

wakefulness inputs from higher brain centers are absent (Forester, 2000). The 

receptors have been postulated to be involved in the development of SDB (Khoo et al., 

1982; Dempsey, 2004; Eckert et al., 2007; Yumino and Bradley, 2008). In this study I 

utilized brief hyperoxia to suppress the tonic drive of the carotid body to assess the 

putative contribution the carotid body to eupneic ventilation in SCI and AB subjects.   

Hyperoxia has been reported to reduce ventilation transiently in adults by ~10% 

thus unmasking the oxygen-led drive to breathe, mediated by the peripheral 

chemoreceptors (Dejours, 1962; Gautier, 2006).  In the current study, AB subjects had a 

decline in VE of ~9% with hyperoxia, in agreement of historical data, compared to SCI 

subjects with ~37% decline.  From this I conclude that SCI subjects have an increased 

peripheral chemoreceptor gain and a heightened reliance on the carotid body for 

maintenance of eupneic ventilation.   

Peripheral chemoreceptor response to brief hypercapnia 

Studies of chemosensitivity to CO2 in an animal model, utilizing an isolated 

perfusion of the carotid body, found that central chemoreceptors respond in a slower 

fashion to CO2 stimulation compared to the carotid body (30.9 sec vs. 19.6 sec, 

respectively). Therefore, the carotid body contributes significantly to the ventilatory 



www.manaraa.com

67 

 

response to brief oscillations in CO2 (Smith and Dempsey, 2006) such as were 

administered in the current study. The methods used to determine the ventilatory effect 

of transient hypercapnia in this study utilize the response characteristic unique to 

peripheral chemoreceptors. 

McClean et al. (1988) using similar methods to determine the response to transient CO2 

in able-bodied adults (26 males and 26 females) found the average response to be 

~0.34 L/min/mmHg (no significant gender or age effect was found) whereas able-bodied 

subjects in the current study had an average response of ~0.26 L/min/mmHg (vs. SCI 

with ~0.78 L/min/mmHg) (McClean et al., 1988). One reason for the slightly higher 

response in the McClean et al. study may be their use of 13% inspired CO2 while the 

current study utilized 8-9% CO2. However, the time response in both studies were 

consistent, with an average of 10-12 seconds from CO2 administration to response.  

During PB and CSDB, as is frequently found in cSCI, individuals are exposed to 

frequent cycles of hypopnea and hyperpnea, and corresponding oscillations in O2 and 

CO2. If the carotid body has enhanced sensitivity to these rapid changes, as was found 

in SCI subjects in the current study, ventilatory overshoot and undershoot are likely to 

occur and perpetuate or worsen breathing instability (Smith and Dempsey, 2006).  

Putative Mechanisms 

This study demonstrated increased peripheral chemoreceptor activity and 

responsiveness in patients with SCI during wakefulness. I considered several potential 

mechanisms including age, gender, SDB and chronic intermittent hypoxia. There was 
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no difference in the age or gender distribution of the two groups. Similarly, both groups 

included patients with SDB. Chronic SCI patients are likely to suffer from repetitive 

episodes hypoxia over several years. Chronic intermittent hypoxia (CIH, intermittent 

hypoxia: IH), especially during sleep, results in the development of sensory long-term 

facilitation (LTF), which manifests as increased peripheral chemoreceptor activity AND 

enhanced propensity to develop LTF following acute episodic hypoxia (Peng, 2003a 

and 2003b; Prabhakar, 2011). Interestingly, patients with SCI demonstrate both 

features. Tester and colleagues (2014) demonstrated that chronic SCI subjects (cervical 

and thoracic), after being exposed to eight 2-minute episodes of IH, exhibited LTF for 30 

minutes. Sensory LTF, secondary to CIH is a time-dependent phenomenon that is 

completely reversible over time following re-oxygenation. Sensory LTF does not depend 

on the severity of hypoxia used for IH conditioning and is not species specific. 

Enhanced LTF and increased peripheral chemoreceptor activity is consistent with CIH-

induced sensory LTF (Figure 15) (Peng, 2003a; Prabhakar, 2011).  

  



www.manaraa.com

69 

 

 

 

Figure 15. Chronic Intermittent Hypoxia and Sensory Long-Term Facilitation 

A schematic representation of the process by which chronic intermittent hypoxia 
leads to long-term facilitation and enhancement of chemoreflex response to O2 and CO2 
fluctuations. This is a proposed mechanism for breathing instability and sleep 
disordered breathing in chronic SCI.  

 

 

Future studies to test peripheral chemoreflex responsiveness in chronic SCI 

subjects before and after treatment with CPAP, or an alternative treatment, to eliminate 

the CIH associated with hypoventilation and SDB, would allow investigators to test the 

hypothesis that CIH is a key mechanism in the development of augmented peripheral 

chemosensitivity in SCI.  
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FINAL CONCLUSIONS 

Summary of Results 

The results of my first aim (chapter 1) indicate that subjects with chronic cervical 

SCI subjects experience a greater magnitude of sleep onset hypoventilation (significant 

reduction in VE, VT, and increase in PETCO2)  compared to able-bodied subjects, which 

cannot be explained by upper airway mechanics (no significant change in upper airway 

resistance was found in either group). I have postulated that putative mechanisms 

include: 1) loss of intercostal innervation resulting in reduced respiratory pump 

musculature, 2) increased peripheral chemoreceptor gain which has been shown to 

cause increased breathing instability with sleep onset (Dunai et al., 1999) or, 3) 

decreased central respiratory drive (Manning et al., 1992).  

The major findings of my second aim (chapter 2) are that subjects with chronic 

cervical and high thoracic SCI have a greater reduction in ventilation in response to brief 

hyperoxia compared to able-bodied subjects, and a heightened response to a single 

breath of CO2, both indicators of increased peripheral chemoresponsiveness. In 

addition, peripheral chemoresponsiveness was not significantly correlated with AHI in 

SCI and AB subjects. From these results I conclude that SCI subjects have an 

increased peripheral chemoreceptor gain and a heightened reliance on the carotid body 

for maintenance of eupneic ventilation.   
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Clinical Significance 

Both hypoventilation (Castriotta and Murthy, 2009) and high peripheral chemoreceptor 

gain (Dempsey, 2004) have been implicated in the development of SDB in the general 

population.  SDB is associated with excessive daytime sleepiness, impaired cognition 

and increased morbidity and mortality due to effects on the cardiovascular system, 

which include: hypertension, coronary artery disease (CAD), pulmonary hypertension, 

heart failure, cardiac arrythmias and increased risk of stroke (Gopalakrishnan and Tak, 

2001; Mohsen and Urbano, 2011; Chou et al., 2012; Johansson et al., 2012).  The high 

prevalence of SDB in the SCI population makes the study of this disorder of critical 

importance. Investigating the underlying mechanisms, and contributing factors, as was 

done in the studies I have reported, will help in the development of targeted treatment 

that can mitigate the negative health effects of this disorder as well as improve quality of 

life for SCI patients.  

 

Future Directions 

 Future studies to elucidate the mechanism of hypoventilation with sleep onset in 

SCI may include: 1) assessment of intercostal and diaphragm EMG during sleep onset 

to determine the contribution of respiratory muscles to over-all ventilation in SCI vs. 

able-bodied subject, 2) assessment of sleep onset ventilation with and without 

hyperoxia (as in Dunai et al., 1999), 3) assessment of peripheral chemoreceptor reflex 

response before and after treatment to alleviate sleep related hypoxia, 4) administration 

of P0.1 measurements during wake and sleep in SCI and able-bodied subjects to 
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assess central ventilatory drive, or 5) a trial of central respiratory stimulants (such as 

acetazolamide or theophylline) to determine if SDB improves when central drive in 

increased in SCI. While much is still left to learn about the etiology of SDB after SCI, the 

current studies have indicated 2 important contributing factors (sleep onset 

hypoventilation and high peripheral chemoreceptor gain) that point the way to future 

investigations.  
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A high prevalence of sleep-disordered breathing (SDB) after spinal cord injury (SCI) has 

been reported in the literature; however, the underlying mechanisms are not well 

understood. My studies had 2 aims: 1) to determine the effect of the withdrawal of the 

wakefulness drive to breathe on the degree of hypoventilation in SCI patients and able-

bodied controls and 2) to determine the response of the peripheral chemoreceptors to 

brief hyperoxia (60 seconds of >60% FiO2) and hypercapnia (a single breath of elevated 

CO2). I studied subjects with chronic cervical and high thoracic SCI and matched able-

bodied subjects. For the first aim subjects underwent polysomnography, which included 

quantitative measurement of ventilation, timing, and upper airway resistance (RUA) on a 

breath-by-breath basis during transitions from wake to stage N1 sleep. Compared to 

able-bodied controls, SCI subjects had a significantly greater reduction in tidal volume 

during the transition from wake to N1sleep (from 0.51±0.21 L   to 0.32±0.10 L vs. 

0.47±0.13 L to 0.43±0.12 L; respectively, p<0.05). Moreover, end-tidal CO2 and O2 were 
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significantly altered from wake to sleep in SCI (38.9±2.7 vs. 40.6±3.4 mmHg; 94.1±7.1 

vs. 91.2±8.3 mmHg; respectively, p˂0.05), but not in able-bodied controls (39.5±3.2 vs. 

39.9±3.2 mmHg; 99.4±5.4 vs. 98.9±6.1 mmHg; respectively, p=ns). RUA was not 

significantly altered in either group.  In aim 2 SCI subjects had a greater reduction in 

ventilation with hyperoxia administration (63.9±23.0 % of baseline VE) compared to 

able-bodied subjects (91.4±15.1 % of baseline VE, p<0.05) and a higher ventilatory 

response to a single breath of CO2 (SCI: 0.78±0.4 L/min/mmHg vs. able-bodied: 

0.26±0.1 L/min/mmHg, p<0.05). In conclusion, individuals with SCI experience 

hypoventilation at sleep onset, which cannot be explained by upper airway mechanics 

and a high peripheral chemoreflex response to O2 and CO2. Sleep onset hypoventilation 

and high peripheral chemoresponsiveness may contribute to the development SDB in 

the SCI population. 
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